Breast cancer is a prevalent malignant tumour with high global incidence. Its diagnosis relies primarily on the analysis of pathological breast images. Owing to the complex organisation of the tumour microenvironment, neural network models are essential as efficient classification tools in the field of pathological image analysis. This study introduced spatially-aware attention swift parallel convolution network (SPA-SPCNet), a lightweight and low-latency model for classifying breast pathologies. A novel module for multi-scale feature extraction was constructed using a depthwise separable convolution method. It focuses on the multi-scale features of pathological images to alleviate recognition problems caused by similar local features in breast cancer tissues. The module concatenates the convolutions of different kernels from three branches. Second, a lightweight dynamic spatially-aware attention module was introduced to integrate the visual graph convolutional architecture in a branch. This allowed the model to capture the spatial structure and relationships in image, enabling better handling of the unique spatial distribution relationship between breast cancer tissue structures. The other branch utilises a self-attention mechanism in the transformer. The module can dynamically adjust the attention of the model to different regions in the image, allowing it to focus on the key features of the complex spatial distribution of breast cancer tissue. This feature fusion method enabled the model to capture both global semantics and local details. Compared with existing lightweight models, the proposed model has advantages in terms of tissue structure classification accuracy, parameter quantity, floating-point operations, and real-time inference speed, providing a powerful tool for computer-aided breast pathological image classification.
Read full abstract