Glioblastoma multiforme (GBM) is recognized as the prevailing malignant and aggressive primary brain tumor, characterized by an exceedingly unfavorable prognosis. Cuproptosis, a recently identified form of programmed cell death, exhibits a strong association with cancer progression, therapeutic response, and prognostic outcomes. However, the specific impact of cuproptosis on GBM remains uncertain. To address this knowledge gap, we obtained transcriptional and clinical data pertaining to GBM tissues and their corresponding normal samples from various datasets, including TCGA, CGGA, GEO, and GTEx. R software was utilized for the analysis of various statistical techniques, including survival analysis, cluster analysis, Cox regression, Lasso regression, gene enrichment analysis, drug sensitivity analysis, and immune microenvironment analysis. Multiple assays were conducted to investigate the expression of genes related to cuproptosis and their impact on the proliferation, invasion, and migration of glioblastoma multiforme (GBM) cells. The datasets were obtained and prognostic risk score models were constructed and validated using differentially expressed genes (DEGs) associated with cuproptosis. To enhance the practicality of these models, a nomogram was developed.Patients with glioblastoma multiforme (GBM) who were classified as high risk exhibited a more unfavorable prognosis and shorter overall survival compared to those in the low risk group. Additionally, we specifically chose FDX1 from the differentially expressed genes (DEGs) within the high risk group to assess its expression, prognostic value, biological functionality, drug responsiveness, and immune cell infiltration. The findings demonstrated that FDX1 was significantly upregulated and associated with a poorer prognosis in GBM. Furthermore, its elevated expression appeared to be linked to various metabolic processes and the susceptibility to chemotherapy drugs. Moreover, FDX1 was found to be involved in immune cell infiltration and exhibited correlations with multiple immunosuppressive genes, including TGFBR1 and PDCD1LG2. The aforementioned studies offer substantial assistance in informing the chemotherapy and immunotherapy approaches for GBM. In summary, these findings contribute to a deeper comprehension of cuproptosis and offer novel perspectives on the involvement of cuproptosis-related genes in GBM, thereby presenting a promising therapeutic strategy for GBM patients.
Read full abstract