2,2′,4,4′-tetra brominated diphenyl ether (BDE-47) is one of the most widely distributed congeners of polybrominated diphenyl ethers. While the relationships between BDE-47 exposure and other hormone-dependent cancers (such as breast cancer) are well established, no previous study has examined whether BDE-47 exposure is related to the development of prostate cancer (PCa). Through bulk and single-cell RNA sequencing (scRNA-seq) analyses, as well as in vitro and in vivo experiments, this study aims to investigate the effect of BDE-47 exposure on PCa progression. Herein, we found that low dose BDE-47 promoted the growth of PCa cells (PC3 and LNCaP) in a dose-dependent manner in vitro and in vivo. Based on Comparative Toxicogenomics Database (CTD) and The Cancer Genome Atlas (TCGA), we obtained 34 BDE-47-related and PCa-related genes through screening and overlapping. These genes were significantly enriched in fatty acid metabolism-related gene ontology (GO) terms, which were also enriched for genes targeting BDE-47 obtained from the UniProt. Through scRNA-seq data, certain cell type-specific expression was observed for CYP2E1, PIK3R1, FGF2, and TOP2A in PCa tissues from men. Molecular docking simulation showed that BDE-47 was tightly bound to the protein residues of AOX1, PIK3R1, FGF2, CAV2, CYP2E1 and TOP2A. Further screening in terms of patient overall survival, receiver operating characteristics curve (ROC) curve and Gleason score grading system narrowed the candidate genes down to TOP2A. Mechanistically, the growth-promoting effect of BDE-47 on PCa cells could be reversed by TOP2A inhibitor. RNA-seq followed by experimental verification demonstrated that TOP2A promoted PCa progression through upregulating LDHA and glycolysis. Furthermore, lactate upregulated TOP2A transcription through lactylation of H3K18la in PCa cells, which could be rescued by LDHA knockdown. Taken together, low dose BDE-47 triggered PCa progression through TOP2A/LDHA/lactylation positive feedback circuit, thus revealing epigenetic shifting and metabolic reprogramming underpinning BDE-47-induced carcinogenesis of the prostate.
Read full abstract