Time-domain reflectometry (TDR) can monitor the moisture content (MC) of water saturated logs stored in wet-decks where the MC exceeds the range that can be measured using traditional moisture meters (>50%). For this application to become routine, it is required that TDR monitoring of wet-decks occurs after establishment, and tools are needed that automate data collection and analysis. We developed models that predict wood MC using three-rod epoxy encased TDR probes inserted into the transverse surface of bolts (prior wet-deck studies were installed on the tangential surface). Models were developed for southern pine, sweetgum, yellow poplar, hickory, red oak, and white oak using a Campbell Scientific TDR100. For each species, at least 37 bolts were soaked for a minimum of three months and then air dried with TDR waveforms, and MC was periodically recorded. Calibrations were developed between MC and the TDR signal using nonlinear mixed effects models. Fixed effects ranged from excellent (southern pine R2 = 0.93) to poor (red oak R2 = 0.36, hickory R2 = 0.38). Independent of wood species, random effects all had a R2 greater than 0.80, which indicates that TDR detects changes in MC at the individual sample level. Use of TDR combined with a datalogger was demonstrated in an operational wet-deck that monitored changes in MC over 12 months, and in a laboratory trial where bolts were exposed to successive wet-dry cycles over 400 days. Both applications demonstrated the utility of TDR to monitor changes in wood MC in high MC environments where periodic measurement is not feasible due to operational safety concerns. Because a saturated TDR reading indicates a saturated MC, and because of the relatively accurate random effects found here, developing individual species models is not necessary for monitoring purposes. Therefore, application of TDR monitoring can be broadly applied for wet-decks, regardless of the species stored.
Read full abstract