This paper deals with a hybrid actuator composed by a piezo and a hydraulic part and with a cascade sliding mode control structure for camless engine motor applications. The idea is to use the advantages of both, the high precision of the piezo and the force of the hydraulic part. In fact, piezoelectric actuators (PEAs) are commonly used for precision positionings, despite PEAs present nonlinearities, such as hysteresis, saturations, and creep. In the control problem such nonlinearities must be taken into account. In this paper the Preisach dynamic model of the piezo actuator with the above mentioned nonlinearities is considered. The control structure consists of two feedforward controllers and two cascade sliding mode ones. The robustness of the proposed scheme consists of the fact that the sliding control structure is independent of the dynamic model of the controlled system. Simulations with real data are shown.
Read full abstract