Cellulolytic microorganisms play a crucial role in agricultural waste disposal. Strain QXD-8T was isolated from soil in northern China. Similarity analyses of the 16S rRNA gene, as well as the 120 conserved genes in the whole-genome sequence, indicate that it represents a novel species within the genus Microbacterium. The Microbacterium sp. QXD-8T was able to grow on the CAM plate with sodium carboxymethyl cellulose as a carbon source at 15 °C, forming a transparent hydrolysis circle after Congo red staining, even though the optimal temperature for the growth and cellulose degradation of strain QXD-8T was 28 °C. In the liquid medium, it effectively degraded cellulose and produced reducing sugars. Functional annotation revealed the presence of encoding genes for the GH5, GH6, and GH10 enzyme families with endoglucanase activity, as well as the GH1, GH3, GH39, and GH116 enzyme families with β-glucosidase activity. Additionally, two proteins in the GH6 family, one in the GH10, and two of nine proteins in the GH3 were predicted to contain a signal peptide and transmembrane region, suggesting their potential for extracellularly degrade cellulose. Based on the physiological features of the type strain QXD-8T, we propose the name Microbacterium psychrotolerans for this novel species. This study expands the diversity of psychrotolerant cellulolytic bacteria and provides a potential microbial resource for straw returning in high-latitude areas at low temperatures.
Read full abstract