Interleukin-6 (IL-6) is highly upregulated in response to skeletal injury, suggesting it plays a role in the inflammatory phase of fracture repair. However, the impact of IL-6 on successful repair remains incompletely defined. Therefore, we investigated the role of IL-6 in two models of fracture repair (full fracture and stress fracture) using 12-week old IL-6 global knockout mice (IL-6 KO) and wild type (WT) littermate controls. Callus morphology and mineral density 14days after full femur fracture did not differ between IL-6 knockout mice and controls. In contrast, IL-6 KO mice had an enhanced bone response 7days after ulnar stress fracture compared to WT, with increased total callus volume (p=0.020) and callus bone volume (p=0.045). IL-6 KO did not alter the recruitment of immune cells (Gr-1 or F4/80 positive) to the stress fracture callus. IL-6 KO also did not alter the number of osteoclasts in the stress fracture callus. Using RNA-seq, we identified differentially expressed genes in stress fracture vs. contralateral control ulnae, and observed that IL-6 KO resulted in only modest alterations to the gene expression response to stress fracture (SFx). Wnt1 was more highly upregulated in IL-6 KO SFx callus at both day 1 (fold change 12.5 in KO vs. 5.7 in WT) and day 3 (fold change 4.7 in KO vs. 1.9 in WT). Finally, using tibial compression to induce bone formation without bone injury, we found that IL-6 KO directly impacted osteoblast function, increasing the propensity for woven bone formation. In summary, we report that IL-6 knockout enhanced formation of callus and bone following stress fracture injury, likely through direct action on the osteoblast's ability to produce woven bone. This suggests a novel role of IL-6 as a suppressor of intramembranous bone formation.
Read full abstract