Anatomical tracing and quantitative techniques were used to examine the tempo and pattern of maturation for callosal projection neurons in the monkey prefrontal cortex (PFC) during fetal and postnatal development. Nineteen monkeys were injected with retrograde tracers (fluorescent dyes, horseradish peroxidase conjugated to wheat germ agglutinin [WGA-HRP] or HRP crystals) at various ages between embryonic day 82 (E82) and adulthood. The size of injection sites was varied in fetal, newborn, and adult cases. In adults, labeled neurons were found in greatest density in the homotopic cortex of the opposite hemisphere and considerable numbers were also observed in a constellation of heterotopic areas including the medial and lateral orbital cortex, the dorsomedial convexity, and the pregenual cortex. The majority of labeled neurons were consistently concentrated in the lower half of layer III in all areas. In cases with large injection sites, callosal neurons of layer III formed a continuous and uninterrupted band that extended over the entire lateral surface of the prefrontal cortex spanning both homotopic and heterotopic areas. In contrast, in cases with small injection sites, the labeling of layer III neurons exhibited discontinuities. Between embryonic ages E82 and E89, injections limited to the cortical layers labeled only a small number of neurons in the opposite hemisphere, indicating that few callosal axons have invaded the cortex by this age. However, by E111 comparable injections labeled a large number of callosal neurons and many features of their distribution were adult-like. The number and constellation of cytoarchitectonic areas that were labeled in the frontal cortex of the opposite hemisphere were the same as in adults and the majority of callosal neurons were found in supragranular layer III. Finally, in fetal animals beyond E111, labeled neurons extended as a nearly unbroken band over a wide expanse of the dorsolateral PFC, resembling the pattern seen in adult monkeys with large injections. The conclusion we draw from these results, together with our earlier findings (Schwartz and Goldman-Rakic: Nature 299:154, 1982), is that callosal neurons whose axons enter the cortical layers of the primate prefrontal cortex achieve their mature laminar and areal distribution prior to birth and do so largely by cumulative processes.
Read full abstract