We have used the molecular dynamics (MD) simulation method to obtain the collision-induced light scattering spectra of the thin krypton layer confined between two parallel graphite slabs. The simulations have been made under constant density, pressure and temperature condition. We have investigated four thin krypton layers of the thickness ranging from 13 to 24 Å. The 2-, 3- and 4-body correlation functions of collision-induced polarizability anisotropy were calculated. The spectra of colliding krypton atoms were simulated as cosine Fourier transform of the total polarizability anisotropy correlation function. The calculated correlation functions and their spectra show substantial dependence on the distance between graphite slabs. The collision-induced light scattering spectrum of krypton bulk sample was also simulated and compared with the krypton layer between graphite walls. The striking differences between these two systems are observed. We have further extended our analysis of krypton movement between graphite slabs by calculating the mean square displacement functions and diffusion coefficients. The decrease of the diffusion of krypton atoms with the increasing distance between graphite walls has been found. The structure of krypton layer has been also investigated by calculating the density profile and pressure tension across the rift. The distance between graphite slabs, for which the highest mobility of krypton's atoms occurred, has been found.
Read full abstract