Homogentisate solanesyltransferase (HST) is a crucial enzyme in the plastoquinone biosynthetic pathway and has recently emerged as a promising target for herbicides. In this study, we successfully expressed and purified a stable and highly pure form of seven times transmembrane protein Chlamydomonas reinhardtii HST (CrHST). The final yield of CrHST protein obtained was 12.2 mg per liter of M9 medium. We evaluated the inhibitory effect on CrHST using Des-Morpholinocarbony Cyclopyrimorate (DMC) and found its IC50 value to be 3.63 ± 0.53 μM, indicating significant inhibitory potential. Additionally, we investigated the substrate affinity of CrHST with two substrates, determining the Km values as 22.76 ± 1.70 μM for FPP and 48.54 ± 3.89 μM for HGA. Through sequence alignment analyses and three-dimensional structure predictions, we identified conserved amino acid residues forming the active cavity in the enzyme. The results from molecular docking and binding energy calculations indicate that DMC has a greater binding affinity with HST compared to HGA. These findings represent substantial progress in understanding CrHST’s properties and potential for herbicide development.Key points• First high-yield transmembrane CrHST protein via E. coli system• Preliminarily identified active cavity composition via activity testing• Determined substrate and inhibitor modes via molecular docking
Read full abstract