AbstractFor traditional materials, a polymer composite with high performance and large‐scale production is still the goal pursued by researchers. In our work, polyamide 6/calcium sulfate whiskers (PA6/SCW) composites were fabricated via melt‐compouding method. The calcium sulfate whisker based on gypsum mineral was used as reinforcement. After grafting silane coupling agent on the whisker surface, the whiskers showed a significant reinforcing effect in polyamide. The mechanics and tribology performance of the samples had been significantly inhanced. Based on the nucleation mechanism of lattice matching, calcium sulfate whiskers have obvious heterogeneous nucleation effect in PA6 matrix, while the crystallization period was slightly prolonged. This was caused by the network structure formed by the whiskers in the matrix, which impeded the free movement of polymer chain segments. In combination with the orientation degree of the molecular chains measured by the interdigital electrode, the reinforcing effect of the oriented PA6 specimens was derived from the orientation arrangement of the whiskers and the efficient load transfer.Highlights Mechanical and tribological properties of composite were significantly improved. The composite could achieved large‐scale production due to simple preparation. The whiskers had obvious heterogeneous nucleation effect in matrix. The reinforcing effect was derived from efficient load transfer from whiskers.
Read full abstract