Wheat TaCDPK1-5A plays critical roles in mediating drought tolerance through regulating osmotic stress-associated physiological processes. Calcium (Ca2+) acts as an essential second messenger in plant signaling pathways and impacts plant abiotic stress responses. This study reported the function of TaCDPK1-5A, a calcium-dependent protein kinase (CDPK) gene in T. aestivum, in mediating drought tolerance. TaCDPK1-5A sensitively responded to drought and exogenous abscisic acid (ABA) signaling, displaying induced transcripts in plants under drought and ABA treatments. Yeast two-hybrid and co-immunoprecipitation assays revealed that TaCDPK1-5A interacts with the mitogen-activated protein kinase TaMAPK4-7D whereas the latter with ABF transcription factor TaABF1-3A, suggesting that TaCDPK1-5A constitutes a signaling module with above partners to transduce signals initiated by drought/ABA stressors. Overexpression of TaCDPK1-5A, TaMAPK4-7D and TaABF1-3A enhanced plant drought adaptation by modulating the osmotic stress-related physiological indices, including increased osmolyte contents, enlarged root morphology, and promoted stomata closure. Yeast one-hybrid assays indicated the binding ability of TaABF1-3A with promoters of TaP5CS1-1B, TaPIN3-5A, and TaSLAC1-3-2A, the genes encoding P5CS enzyme, PIN-FORMED protein, and slow anion channel, respectively. ChIP-PCR and transcriptional activation assays confirmed that TaABF1-3A regulates these genes at transcriptional level. Moreover, transgene analysis indicated that these stress-responsive genes positively regulated proline biosynthesis (TaP5CS1-1B), root morphology (TaPIN3-5A), and stomata closing (TaSLAC1-3-2A) upon drought signaling. Positive correlations were observed between yield and the transcripts of TaCDPK1-5A signaling partners in wheat cultivars under drought condition, with haplotype TaCDPK1-5A-Hap1 contributing to improved drought tolerance. Our study concluded that TaCDPK1-5A positively regulates drought adaptation and is a valuable target for molecular breeding the drought-tolerant cultivars in T. aestivum.
Read full abstract