Abstract

Calcium-dependent protein kinases (CPKs) are crucial for recognizing and transmitting Ca2+ signals in plant cells, playing a vital role in growth, development, and stress response. This study aimed to identify and detect the potential roles of the CPK gene family in the amphidiploid Brassica carinata (BBCC, 2n = 34) using bioinformatics methods. Based on the published genomic information of B. carinata, a total of 123 CPK genes were identified, comprising 70 CPK genes on the B subgenome and 53 on the C subgenome. To further investigate the homologous evolutionary relationship between B. carinata and other plants, the phylogenetic tree was constructed using CPKs in B. carinata and Arabidopsis thaliana. The phylogenetic analysis classified 123 family members into four subfamilies, where gene members within the same subfamily exhibited similar conserved motifs. Each BcaCPK member possesses a core protein kinase domain and four EF-hand domains. Most of the BcaCPK genes contain 5 to 8 introns, and these 123 BcaCPK genes are unevenly distributed across 17 chromosomes. Among these BcaCPK genes, 120 replicated gene pairs were found, whereas only 8 genes were tandem duplication, suggesting that dispersed duplication mainly drove the family amplification. The results of the Ka/Ks analysis indicated that the CPK gene family of B. carinata was primarily underwent purification selection in evolutionary selection. The promoter region of most BcaCPK genes contained various stress-related cis-acting elements. qRT-PCR analysis of 12 selected CPK genes conducted under cadmium and salt stress at various points revealed distinct expression patterns among different family members in response to different stresses. Specifically, the expression levels of BcaCPK2.B01a, BcaCPK16.B02b, and BcaCPK26.B02 were down-regulated under both stresses, whereas the expression levels of other members were significantly up-regulated under at least one stress. This study systematically identified the BcaCPK gene family in B. carinata, which contributes to a better understanding the CPK genes in this species. The findings also serve as a reference for analyzing stress responses, particularly in relation to cadmium and salt stress in B. carinata.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call