We recently reported the existence of a new class of aspiny interneurons characterized by their immunoreactivity for the calcium-binding protein calretinin (CR) in human striatum. This group is composed of numerous medium-sized (10-20 microm) neurons with poorly branched dendrites and a smaller number of large-sized (24-42 microm) neurons with highly ramified dendrites. We further demonstrated the selective sparing of the medium-sized, but not all the large-sized, CR+ striatal neurons in Huntington's disease. In the present study, we applied a double-antigen localization method to postmortem striatal tissue obtained from normal individuals to further characterize the chemical phenotype of these two subsets of CR+ neurons. Our results reveal that in the medium-sized neurons, CR is not colocalized with any of the following current markers of striatal neurons: calbindin, parvalbumin, beta-nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), or choline acetyltransferase (ChAT). Furthermore, quantitative estimates show that the medium-sized CR+ neurons are by far the most abundant type of interneurons in the human striatum. In contrast, CR is colocalized with ChAT in about 80% of the large-sized CR+ neurons. Thus, the medium-sized CR+ neurons appear to form a distinct class of striatal interneurons, whereas most of the large-sized CR+ neurons belong to the population of giant cholinergic neurons. This study has provided the first exhaustive characterization of the chemical phenotype of the CR + neurons in the human striatum.