125I-calcitonin gene-related peptide (CGRP) binding sites were mapped in the human brain and rat brains by in vitro macroautoradiography, and compared to each other. Binding experiments were made to characterize 125I-CGRP binding on the human and rat brains. Scatchard analysis of saturation experiments from slide-mounted sections of the human and rat cerebellum displayed 125I-CGRP binding sites with a dissociation constant ( K d ) of 0.17 nM and 0.11 nM, respectively, and a maximal number of binding sites (B max) of 96.8 fmol/mg and 23.0 fmol/mg protein. 125I-CGRP binding was time-dependent, reversible and saturable with high affinity in the brains. Autoradiograms showed a discrete distribution of 125I-CGRP binding sites throughout the brains of human and rat with patterns similar to each other. In the human brain, the highest binding was seen in the cerebellum, inferior olivary nuclear complex, certain parts of the central gray matter, arcuate nuclei of the medulla oblongata and dorsal motor nucleus of the vagus, and densities of CGRP-binding sites were high in the nucleus accumbens, amygdala, tail of the nucleus caudatus, substantia nigra, ventral tegmental area, medial portion of the inferior colliculus, medial pontine nuclei, locus coeruleus, inferior vestibular nucleus, substantia gelatinosa of the spinal trigeminal nucleus, nucleus of the solitary tract and nucleus cuneatus lateralis. In the rat, high densities were found in the hippocampus pars anterior, nucleus accumbens, ventral and caudal portions of the nucleus caudatus-putamen, central and basolateral nuclei of the amygdala, caudal portion of the insular cortex, medial geniculate body, superior and inferior colliculi, certain portions of the central gray matter, locus coeruleus, inferior olivary nuclei, vagal complex, nucleus cuneatus lateralis and cerebellum. In contrast, in both species, most of the cortical areas including the hippocampus, most of the thalamus, and hypothalamus exhibited few binding sites. In addition, high quantities of the binding sites were seen on the pia mater and on walls of blood vessels in the brain and subarachnoidea. These results revealed essentially homologous locations of CGRP binding sites in the human and rat central nervous systems and well corresponding distributions of binding sites and endogenous CGRP-like immunoreactivity.
Read full abstract