Magmatic pyrochlores from the Lueshe syenite–carbonatite complex from the northeastern part of Democratic Republic of Congo (ex-Zaı̈re) are characterized by Ta/Nb ratios in an increasing order from pyroxenite, calcite-carbonatite (sövite), silicate xenoliths (nodules) to syenite. Substitutions involving Nb, Ta, Ti and REE have been precisely described. Hydrothermal alteration of Lueshe pyrochlore involves the substitution of Na ++F −=VA+VY and Ca+O=VA+VY (VA=A-site vacancy and VY=Y-site vacancy). In calcite carbonatite, hydrothermal alteration of pyrochlore took place during and after the precipitation of ancylite-(Ce), strontianite, celestite, baryte and fayalite according to a fluid composition of relatively low pH, a Na + , a Ca 2+ and a HF, and high a Sr 2+ and a LREE 3+ . The supergene alteration is characterized by complete leaching of Na, Ca and F and partial incorporation of K, Ba, Sr and Ce resulting in the formation of kali-, bario-, strontio- and ceriopyrochlore respectively. The Na-poor pyrochlore may be an intermediate variety corresponding to an alteration stage between the hydrothermal and weathered pyrochlores. The IR spectroscopic study has indicated that the weathered pyrochlore is a hydrated variety containing two bands of OH vibration modes at 3413 and 1630 cm −1. During hydrothermal and supergene alterations, the cations at B-site remain relatively constant. The variable chemical compositions of the pyrochlores from the Lueshe complex represent geochemical memories of the different alteration conditions including the variation in the oxidation–reduction environment.
Read full abstract