This study was conducted to investigate the effect of circumferential angle, lug spacing and wheel slip on forces produced by a cage wheel. Experiments were conducted in a laboratory soil bin having Bangkok Clay soil with 51% (d.b.) soil moisture content. Six ring-type loadcells were used to measure the soil horizontal, vertical and transverse reactions on the cage wheel lugs. The circumferential angle was varied from 0, 15, 30 to 45°. The lug spacing and wheel slip were varied from 20, 30 to 40° and 20, 35 to 50% respectively. All the force measurements were done at a constant 7 cm sinkage. The results showed that increasing circumferntial angle up to 45° can reduce variation in lug wheel forces, at the same time it had little effect on the mean pull and lift values. The side force was affected by the changes of circumferential angle. The 20° lug spacing not only gave the minimum variations but also maximum mean lug forces. The highest lug wheel forces occurred at 35% wheel slip.