In this work, we report on the effects of incorporating manganese (Mn) dopant into different sizes of cadmium selenide (CdSe) quantum dots (QDs), which improves the electronic and optical properties of the QDs for multiple applications such as light-emitting diodes, lasers, and biological labels. Furthermore, the greener inverse Micelle method was implemented using organic ligand, which is oleic acid. This binding of the surface enhanced the QDs’ surface trap passivation of Mn-doped CdSe, which then increased the quantity of the output. In addition, the inverse Micelle technique was used successfully to dope Mn into CdSe QDs without the risk of Mn dopants being self-purified as experienced by wurtzite CdSe QDs. Also, we report the X-ray photoelectron spectroscopy (XPS) results and analysis of zinc blended manganese-doped cadmium selenide quantum dots (Mn-doped CdSe QDs), which were synthesized with physical sizes that varied from 3 to 14 nm using the inverse Micelle method. The XPS scans traced the existence of the Se 3d and Cd 3d band of CdSe crystals with a 54.1 and 404.5 eV binding energy. The traced 640.7 eV XPS peak is proof that Mn was integrated into the lattice of CdSe QDs. The binding energy of the QDs was related to the increase in the size of the QDs.
Read full abstract