Liver cancer and gastric cancer have extremely high morbidity and mortality rates worldwide. It is well known that an increase or decrease in trace metals may be associated with the formation and development of a variety of diseases, including cancer. Therefore, this study aimed to evaluate the contents of aluminium (Al), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), selenium (Se), and zinc (Zn) in cancerous liver and gastric tissues, compared to adjacent healthy tissues, and to investigate the relationship between trace metals and cancer progression. During surgery, multiple samples were taken from the cancerous and adjacent healthy tissues of patients with liver and gastric cancer, and trace metal levels within these samples were analysed using inductively coupled plasma mass spectrometry (ICP-MS). We found that concentrations of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn in tissues from patients with liver cancer were significantly lower than those in healthy controls (P < 0.05). Similarly, patients with gastric cancer also showed lower levels of Cd, Co, Cr, Mn, Ni, and Zn—but higher levels of Cu and Se—compared to the controls (P < 0.05). In addition, patients with liver and gastric cancers who had poorly differentiated tumours and positive lymph node metastases showed lower levels of trace metals (P < 0.05), although no significant changes in their concentrations were observed to correlate with sex, age, or body mass index (BMI). Logistic regression, principal component analysis (PCA), Bayesian kernel regression (BKMR), weighted quantile sum (WQS) regression, and quantile-based g computing (qgcomp) models were used to analyse the relationships between trace metal concentrations in liver and gastric cancer tissues and the progression of these cancers. We found that single or mixed trace metal levels were negatively associated with poor differentiation and lymph node metastasis in both liver and gastric cancer, and the posterior inclusion probability (PIP) of each metal showed that Cd contributed the most to poor differentiation and lymph node metastasis in both liver and gastric cancer (all PIP = 1.000). These data help to clarify the relationship between changes in trace metal levels in cancerous liver and gastric tissues and the progression of these cancers. Further research is warranted, however, to fully elucidate the mechanisms and causations underlying these findings.
Read full abstract