Abstract

Stabilization techniques are vital in controlling Cd soil pollution. Nano zero valent iron (nZVI) has been extensively utilized for Cd remediation owing to its robust adsorption and reactivity. However, the environmental stress-induced stability of Cd after nZVI addition remains unclear. A pot experiment was conducted to evaluate the Cd bioavailability in continuously flooded (130 d) soil after stabilization with nZVI. The findings indicated that nZVI application did not result in a decline in Cd concentration in rice, as compared to the no-nZVI control. Additionally, nZVI simultaneously increased the available Cd concentration, iron-manganese oxide-bound (OX) Mn fraction, and relative abundance of Fe(III)-reducing bacteria, but it decreased OX-Cd and Mn availability in soil. Cadmium in rice tissues was positively correlated with the available Cd in soil. The results of subsequent adsorption tests demonstrated that CdO was the product of Cd adsorption by the nZVI aging products. Conversely, Mn2+ decreased the adsorption capacity of Cd-containing solutions. These results underscore the crucial role of both biotic and abiotic factors in undermining the stabilization of nZVI under continuous flooding conditions. This study offers novel insights into the regulation of nZVI-mediated Cd stabilization efficiency in conjunction with biological inhibitors and functional modification techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call