In the developing mammalian kidney, nephron formation is initiated by a subset of nephron progenitor cells (NPCs). Wnt input activates a β-catenin (Ctnnb1)-driven, transcriptional nephrogenic program and the mesenchymal to epithelial transition (MET) of NPCs. Using an in vitro mouse NPC culture model, we observed that activation of the Wnt pathway results in the aggregation of induced NPCs, which is an initiating step in the MET program. Genetic removal showed aggregation was dependent on β-catenin. Modulating extracellular Ca2+ levels showed cell-cell contacts were Ca2+ dependent, suggesting a role for cadherin (Cdh)-directed cell adhesion. Molecular analysis identified Cdh2, Cdh4 and Cdh11 in NPCs, and the β-catenin directed upregulation of Cdh3 and Cdh4 accompanying the MET of induced NPCs. Mutational analysis of β-catenin supported a role for a Lef/Tcf-β-catenin-mediated transcriptional response in the cell aggregation process. Genetic removal of all four cadherins, and independent removal of α-catenin or of β-catenin-α-catenin interactions, abolished aggregation, but not the inductive response to Wnt pathway activation. These findings, and data in an accompanying article highlight the role of β-catenin in linking transcriptional programs to the morphogenesis of NPCs in mammalian nephrogenesis.