Anatomical and developmental variations of ureters and renal pelvis have been observed frequently during routine human cadaveric dissection and surgical practice; however, their coexistence with accessory or aberrant renal arteries is exceptionally rare. Accordingly, this study was designed to evaluate the prevalence of anatomical and developmental abnormalities of ureters and renal pelvis existing with accessory renal arteries in human cadavers. This study was carried out on 50 human cadavers including dissected specimens (25 males and 25 females) the kidneys, renal pelvis, and ureters along with their arteries were exposed and the anomalous abnormalities of the renal pelvis and ureters existing with accessory renal arteries were observed. Photographs of the anomalous and developmental variations were taken for proper documentation. Among the 50 cadavers studied, unilateral double ureters were found in 5 cadavers (10%), rare bilateral "S-"shaped loop of ureter with quadruple uretic constrictors in the abdominal segment of the ureter was observed in one female cadaver (2%), accessory or aberrant renal arteries were found in 15 cadavers (30%), hydronephrosis involving the renal pelvis and ureters was observed in 9 cadavers (18%). Interestingly, this prevalence was higher among males (28%) compared to females (8%). Moreover, the occurrence of bilateral hydronephrosis of the kidneys, renal pelvis, and ureters was identified in a single male cadaver, representing 2% of the sample. Notably, the prevalence of double ureter, hydronephrosis accompanied by congenital double and triple accessory renal arteries was documented in nine cadavers, accounting for 18% of the cohort. Anatomical and developmental variations of the ureters, renal pelvis, and renal vasculature, as well as their relationships to surrounding structures, hold clinical significance due to their impact on various surgical procedures, including kidney transplantation, abdominal aorta reconstruction, interventional radiology, and urologic operations. Therefore, identifying these potential developmental variations is essential for effective surgical management to preserve renal function and ensure optimal patient outcomes.