CLARITY is one new technology which allows the brain tissue become transparent. It has successfully been combined with immunofluorescence staining to achieve the 3D visualization of some molecules or neuronal cells in some disease brains. The temporal lobe epilepsy (TLE) is one neuronal disease which is characterized by the sprouting of the massy fibers (MSF). Previous study has showed that MSF could be affected by the phosphorylation at site-262 of microtubule association protein Tau (p-tau (Ser262)). However, in TLE little useful information was reported concerning the 3D architecture of p-tau (Ser262) and its relationship with 14-3-3 zeta that regulated the phosphorylation of Tau in AD disease. In this paper, pilocarpine-induced epilepsy model was established and identified by Timm-staining. Double immunofluorescent staining results showed that the development of TLE gave rise to the colocalization of p-tau (Ser262) and 14-3-3 zeta protein in CA1 and CA3 zone in hippocampi. The mm-thick brain sections were passively clarified, and 3D reconstruction imaging of the immunofluorescent staining showed that p-tau (Ser262) was diverse cluster-like shape. These results proved that CLARITY could be used to study TLE, in which the 3D morphologic changes of p-tau (Ser262) and the role of 14-3-3 zeta in the regulation of Tau needed to be further investigated.