One atmosphere liquid-present experiments were carried out in the CMAS system using an ordinary quench furnace apparatus. The runs, including reversal and duplicate experiments, describe the univariant curve l=fo+an+ di between the invariant points Q: l+fo+an=di+sp and F: l+fo=an+di+oen, located respectively at 1245±1° C and 1244±1° C. The thermal divide on this curve M3: l= fo+an+di is located at 1275±1° C and plots well within the silica-saturated field, in agreement with Longhi's (1987) experiments. Along the univariant curve l=fo+an+di, liquid composition evolves away from the thermal divide either toward invariant points Q or F and pierces the silica saturation plane, i.e., the join Di-An-En, in the silica saturated field. In this compositional range, the Al solubility in clinopyroxene changes drastically from one side of the thermal divide to the other, with great increase of Al solubility in the silica-undersaturated field. Four endmembers must be used to describe the complex solid solution of anorthite: CaAl2Si2O8, CaMgSi3O8, MgAl2Si2O8 and [] Si4O8. The last two of these are present only within the silica-saturated field. Unlike clinopyroxene, the Mg content of anorthite is insensitive to the thermal barrier but is only sensitive to silica-saturation plane. Olivine composition can be described by a binary solid solution of forsterite and monticellite with no Ca in the M2 site. As with anorthite, olivine compositions exhibit a marked change with crossing of the silica-saturation plane. The above features imply that the solubility of minor elements in crystalline phases (Al in clinopyroxene, Ca in olivine and Mg in anorthite) selectively respond to only one or another of these particular plane. Results have many important consequences. One is the likelihood of changes in melt speciation depending on position with respect to the thermal divide and the silica-saturation plane.