Macrophages express high levels of the myristoylated, alanine-rich, C kinase substrate (MARCKS), an actin cross-linking protein. To investigate a possible role of MARCKS in macrophage function, fetal liver-derived macrophages were generated from wild-type and MARCKS knockout mouse embryos. No differences between the wild-type and MARCKS-deficient macrophages with respect to morphology (Wright's stain) or actin distribution (staining with rhodamine-phalloidin, under basal conditions or after treatment with phorbol esters, lipopolysaccharide, or both) were observed. We then evaluated phagocytosis mediated by different receptors: Fc receptors tested with IgG-coated sheep red blood cells, complement C3b receptors tested with C3b-coated yeast, mannose receptors tested with unopsonized zymosan, and nonspecific phagocytosis tested with latex beads. We also studied fluid phase endocytosis in macrophages and mouse embryo fibroblasts by using FITC-dextran to quantitate this process. In most cases, there were no differences between the cells derived from wild-type and MARCKS-deficient mice. However, a minor but significant and reproducible difference in rates of zymosan phagocytosis at 45-60 min was observed, with lower rates of phagocytosis in the MARCKS-deficient cells. Our data indicate that MARCKS deficiency may lead to slightly decreased rates of zymosan phagocytosis.
Read full abstract