ConspectusC1 catalysis, which refers to the conversion of molecules with a single carbon atom, such as CO, CO2, and CH4, into clean fuels and basic building blocks for chemical industries, has built a bridge between carbon resource utilization and valuable chemical supply. With respect to the goal of carbon neutrality, C1 catalysis also plays an essential role owing to its integrated functions in the green catalytic process with fewer CO2 emissions and even direct high-value-added utilization of greenhouse gases (CO2 and CH4). However, the inert nature of the C-O or C-H bond in C1 molecules as well as uncontrollable C-C coupling render C1 catalysis challenging. The rational design of highly active catalytic materials (denoted as C1 catalysts) with strong capacities for C-O or C-H bond activation and C-C coupling by convenient nanomaterials fabrication methods to boost the catalytic performance of C1 molecule conversion, including targeted product selectivity and long-term stability, is the cornerstone of C1 catalysis.Notably, the familiar concepts in heterogeneous catalysis, such as tandem catalysis and confinement catalysis, are applicable for C1 catalysis and have been successfully used to design a C1 catalyst. Regarding the tandem catalysis concept that integrates multiple reactions in a single-pass via a bi- or multifunctional catalyst, it is promising to shed new light on the oriented conversion of C1 molecules, especially for C2+ hydrocarbon or oxygenate synthesis. The confinement effect is powerful for controlling the product distribution and enhancing activation efficiency of inert chemical bonds in C1 catalysis due to the unique reactants/intermediate adsorption and evolution behaviors on the confined catalytic interface with a special electronic environment. Moreover, metal-support interactions (MSIs), electronic properties of the active site, and catalytic engineering issues are also susceptible to the C1 molecule conversion performance. Therefore, under the guidance of basic and novel rules in heterogeneous catalysis, the innovation of catalytic materials with the aid of advanced catalytic materials fabrication techniques has always been a hot research topic in C1 catalysis.In this Account, we briefly describe the challenges in thermal-catalytic C1 molecule (mainly CO, CO2, and CH4) conversion. At the same time, the synergistic functioning of the physicochemical properties of the catalytic materials on the performance in C1 molecule conversion is highlighted. More importantly, we summarize our progress in rationally designing tailor-made C1 catalysts to enhance C1 molecule activation efficiency and targeted product selectivity via powerful nanomaterials fabrication techniques, such as traditional wet-chemistry strategies, the magnetron sputtering method, and 3D printing technology. Specifically, the ingenious capsule catalyst and ammonia pools in zeolites fabricated by a wet chemistry process possess an extraordinary effect on the transformation of CO, CO2, and CH4 molecules. Also, the sputtering method is reliable in modulating the electronic properties of metallic active sites for C1 molecule conversion, thereby tailoring the final product selectivity. Furthermore, we showcase the strong capability of metal 3D printing technology in fabricating a self-catalytic reactor, by which the functions of the reaction field and nanoscale active sites are well integrated. Finally, we predict the future research opportunities in highly efficient C1 catalyst design with the assistance of clever nanomaterials fabrication techniques.
Read full abstract