The polarized Raman spectra of an oriented La(η5-C5Me5)3 (1) single crystal (where the principal axes of the two molecules per unit cell are uniformly oriented) as well as the mid (ca. 90K) and far infrared spectra of pellets have been recorded. Applying the selection rules of C3h symmetry to the spectra obtained, the irreducible representations (irreps) of numerous lines/bands of intra-ligand character were derived. In the range <400cm−1, where 28 Raman-allowed lines and 20 FIR-allowed bands of both skeletal and intra-ligand character are expected, only few assignments based on symmetry considerations were possible. In order to increase the number of identifications, model calculations on the basis of density functional theory (DFT) were performed. In the intra-ligand range >400cm−1, the obtained results agree well with the experimental findings. Because of the strong mixing at lower wavenumbers, even the separation of calculated skeletal and intra-ligand modes and the identification of the former was only successful by comparing the calculated FIR and averaged Raman spectra of compound 1 with those of La(η5-C5Me4H)3 (2). Making use of both the calculated frequencies of normal modes and their polarizability tensors, the polarized Raman spectra of an oriented single crystal of 1 in the range <400cm−1 were calculated and compared to the experimental ones. Because of an overestimation of the mixing of normal vibrations of A′ symmetry, the experimental intensities of the lines of the symmetric stretch ν1(A′) were not reproduced by the calculation for compound 1 but by that for Sm(η5-C5Me5)3 (3). Skeletal and intra-ligand modes were separated and designated. Neglecting νC–H modes, the DFT calculation for 1 achieved an r.m.s. deviation of 17.9cm−1 for 72 assignments.
Read full abstract