Hereditary hemochromatosis (HH) is a genetic iron overload disease, in the majority of cases associated with homozygosity for the C282Y mutation of the HFE gene. In spite of this genetic homogeneity, there is a great clinical heterogeneity among HH patients. Low CD8 + lymphocyte numbers have been associated with a more severe expression of iron overload in HH patients, and in experimental models of iron overload. HH patients present low serum transferrin levels. Transferrin is an indispensable resource for lymphopoiesis. Lymphocyte homeostasis follows general ecology rules of population dynamics that involve competition for limiting resources. In the present study, we questioned whether transferrin levels could be associated with the anomalies seen previously in lymphocyte subset numbers in HH patients. Transferrin levels, total and subset T lymphocyte counts were done in 426 apparently healthy subjects genotyped for HFE. All HFE C282Y carriers presented significantly lower serum transferrin levels than the wild type group, a difference that could not be explained solely by the degree of iron overload. Significant differences were also seen in transferrin levels between males and females, with females presenting higher average serum Transferrin levels. In the population of subjects with Transferrin levels lower than 248 mg/dl, a positive correlation was seen between the peripheral CD8 + lymphocyte numbers and serum transferrin levels ( R 2 = 2.41; r = 0.16; P = 0.018). To test the possible limiting resource effect of transferrin, the correlation between transferrin levels and CD8 + lymphocyte numbers was scrutinized in 34 HH patients, homozygous for the C282Y mutation. In the homozygous males, where the lowest average transferrin levels were seen, another highly significant correlation was observed between Transferrin levels and CD8 + numbers. This correlation points to a possible role of transferrin as a limiting resource for MHC class I dependent lymphocyte proliferation, an effect that was not observed in C282Y homozygous female patients.