Benzodiazepine abuse remains a significant public health concern. Current sample preparation methods for benzodiazepine analysis from human serum often involve complex procedures that require large sample volumes and extensive organic solvent use. To address these limitations, this study presents a novel and efficient sample preparation method utilizing 3D-printed sorbent devices. The 3D-printed devices, fabricated from a thermoplastic composite incorporating C18-modified silica, demonstrated exceptional performance in extracting benzodiazepines from human serum. The method was optimized and validated according to ICH guidelines, ensuring its reliability for quantitative benzodiazepine analysis. Notably, the method required minimal sample and solvent volumes, eliminating the need for protein precipitation, evaporation, and reconstitution. This novel sample preparation approach offers significant advantages over traditional methods, providing a more efficient and environmentally friendly solution for benzodiazepine analysis. The versatility of 3D printing allows for the customization of sorbent devices for various analytes and matrices, expanding the potential applications of this method. Coupled with a rapid and robust LC-MS method optimized with DryLab, this approach presents a valuable and sensitive tool for benzodiazepine monitoring in clinical and toxicological settings.
Read full abstract