Dynamic aspects of structural relationships among class IIa bacteriocins, which are antimicrobial peptides from lactic acid bacteria (LAB), have been examined by use of circular dichroism (CD), molecular dynamics (MD) simulations, and activity testing. Pediocin PA-1 is a potent class IIa bacteriocin, which contains a second C-terminal disulfide bond in addition to the highly conserved N-terminal disulfide bond. A mutant of pediocin PA-1, ped[M31Nle], wherein the replacement of methionine by norleucine (Nle) gives enhanced stability toward aerobic oxidation, was synthesized by solid-phase peptide synthesis to study the activity of the peptide in relation to its structure. The secondary structural analysis from CD spectra of ped[M31Nle], carnobacteriocin B2 (cbn B2), and leucocin A (leuA) at different temperatures suggests that the alpha-helical region of these peptides is important for target recognition and activity. Using molecular modeling and dynamic simulations, complete models of pediocin PA-1, enterocin P, sakacin P, and curvacin A in 2,2,2-trifluoroethanol (TFE) were generated to compare structural relationships among this class of bacteriocins. Their high sequence similarity allows for the use of homology modeling techniques. Starting from homology models based on solution structures of leuA (PDB code 1CW6) and cbnB2 (PDB code 1CW5), results of 2-4 ns MD simulations in TFE and water at 298 and 313 K are reported. The results indicate that these peptides have a common helical C-terminal domain in TFE but a more variable beta sheet or coiled N terminus. At elevated temperatures, pediocin PA-1 maintains its overall structure, whereas peptides without the second C-terminal disulfide bond, such as enterocin P, sakacin P, curvacin A, leuA, and cbnB2 experience partial disruption of the helical section. Pediocin PA-1 and ped[M31Nle] were found to be equally active at different temperatures, whereas the other peptides that lack the second C-terminal disulfide bond are 30-50 times less antimicrobially potent at 310 K (37 degrees C) than at 298 K (25 degrees C). These results indicate that the structural changes in the helical region observed at elevated temperatures account for the loss of activity of these peptides. The presence of C-terminal hydrophobic residues on one side of the amphipathic helix in class IIa bacteriocins is an important feature for receptor recognition and specificity toward particular organisms. This study assists in the understanding of structure-activity relationships in type IIa bacteriocins and demonstrates the importance of the conserved C-terminal amphipathic alpha helix for activity.