Osteosarcoma (OS) is a primary malignant bone tumor, and the cure rate has stagnated in the past three decades. Butein, a plant polyphenol extracted from many herbs, has been proved to possess anti-tumor activity. However, the effect of butein on human OS and the underlying mechanisms remain to be elucidated. The OS cell line 143B was used. The effects of butein were evaluated through the cell proliferation assay, flow cytometry, florescence and transmission electron microscopy, and western blotting. All statistical analyses were performed using GraphPad Prism 7.0. Butein was found to inhibit cell proliferation by causing G2/ M phase arrest in the 143B cells. In addition, butein suppressed the invasion of 143B cells upon IL-6 treatment. Additionally, we found that butein inhibited the invasion of 143B cells stimulated with IL-6 via the p-STAT3-MMP9 signaling pathway. Remarkably, butein triggered extrinsic and intrinsic apoptosis and autophagy of 143B cells. The process of autophagy may have tumor-supporting effects. Furthermore, butein induced oxidative stress as evidenced by ROS generation, increase in malondialdehyde (MDA) level, and decrease in GSH/GSSH ratio and GPX4 expression. N-acetylcysteine can reverse the change of ROS. Further experiments indicated apoptosis and autophagy could be attenuated by the N-acetyl-L-cysteine and c-Jun N-terminal kinase (JNK) inhibitor SP600125. Additionally, butein inhibited the Akt/mammalian target of rapamycin (mTOR) signaling pathway, and suppressed the Akt kinase activity increased apoptosis and autophagy. Our results revealed butein induced apoptosis and autophagy by regulating oxidative stress, activating the JNK signaling pathway and blocking the Akt/mTOR signaling pathway in OS cells. Additionally, butein inhibited the invasion of 143B cells stimulated with IL-6 through the pSTAT3- MMP9 signaling pathway. In view of these results, butein may be a potential anti-tumor drug targeting osteosarcoma.
Read full abstract