AbstractAlthough lead‐free dielectric ceramics have been widely studied to obtain excellent dielectric properties and good energy storage properties, the primary challenge of low energy storage density has not yet been resolved. Here, we introduce the concept of crossover relaxor ferroelectrics, which represent a state intermediate between normal ferroelectrics and relaxor ferroelectrics, as a solution to address the issue of low energy density. The (1−x)BaSrTiO3−xBi(Zn1/2Ti1/2)O3 (x = 0,.05, .1, .15, .2) ceramics were prepared by a solid‐state method. Remarkably, 0.85BST–0.15BZT ceramics achieved a high recoverable energy density (Wrec) of 2.18 J/cm3 under an electric field of 240 kV/cm. BST–BZT materials exhibit substantial recoverable energy density, high breakdown strength, and superior energy efficiency, positioning them as a promising alternative to meet the diverse demands of high‐power applications.
Read full abstract