Nowadays, an increasing number of blockchain architectures provide well-promising protocols for pseudonymous online payments via proposed cryptocurrencies. Most of them suffer from a number of extensibility and scalability issues, as their capacity regarding the number of transactions they are capable of processing per second is limited. Security is also a challenge for this kind of architectures. This paper presents the design and implementation of the Adrestus system, a blockchain-based transaction system with a novel consensus mechanism that is able to tolerate Byzantine faults and is designed to scale without compromising system security. One of the main components of the Adrestus design is a consistent hashing mechanism for the efficient assignment of transactions on parallel regions, called zones, and for solving load balancing problems. We claim that the Adrestus blockchain system scales linearly without compromising system security and achieves its goals without introducing the unnecessary overhead and by eliminating energy and computational waste. Preliminary theoretical simulations and results reflect that Adrestus exceeds the average throughput of the most well-known cryptocurrencies like Bitcoin, and thus, it achieves a higher performance. In this paper, we present this proposed approach along with simulation results and examine the conditions for the proposed fault-tolerant system to meet safety and liveness.
Read full abstract