Seasonal reproduction is a widely used breeding strategy in wildlife, especially vertebrates inhabiting temperate regions. Generally, ambient temperature is considered a significant factor influencing the reproductive status of animals. In the present study, wild ground squirrels (Spermophilus dauricus), typical seasonal breeders, were used as an animal model to investigate the mechanism behind the impact of low ambient temperature on testicular function. To simulate the winter environment of wild ground squirrels, we lowered the temperature gradient in the rearing environment to 4 °C. At sampling, the body surface temperature of the squirrels reared under normal ambient temperature (22 °C, NAT group) and the low ambient temperature (4 °C, LAT group) were 31.5 °C and 22.8 °C, respectively. Subsequently, we conducted immunohistochemical assays, qPCR, and enzyme-linked immunosorbent assays (ELISA) to examine the variations in testicular functions, as well as the dynamics and functions of mitochondria, in the squirrels of NAT and LAT groups. As a result, the levels of positive immunostaining for PCNA, P21, and P27 were significantly lower in the testes of LAT group, while the levels of immunostaining for Cleaved Caspase-3 and TUNEL were significantly higher. In addition, the low-temperature treatment reduced the expression level of steroidogenesis-related genes, including LHR, FSHR, GATA-4, P450scc, and P450arom, and decreased the testosterone concentration. Moreover, markers of mitochondrial fission and fusion, DRP1 and MFN2, respectively, were increased in the testes of LAT group. Additionally, the mRNA level of SOD1 was notably higher in the testes of LAT group. In conclusion, the low ambient temperature inhibited spermatogenesis, steroidogenesis, as well as mitochondrial dynamics and functions in the testes of wild ground squirrels.
Read full abstract