A diphenylphosphine-oxide-based conjugated organic molecule, ((1,3,5-triazine-2,4,6-triyl)tris(benzene-3,1-diyl))tris(diphenylphosphine oxide) (PO-T2T), was doped into ZnO to improve the characteristics of the electron transport layer (ETL) in inverted organic solar cells (OSCs). A series of characterization techniques were carried out to demonstrate the function of PO-T2T in film aspect, including transmittance, atomic force microscopy (AFM), transmission electron microscopy (TEM), water contact angle and grazing incidence wide angle X-ray scattering (GIWAXS). Light dependent, space-charge-limited current, exciton dissociation possibility were aimed to explore the influence of PO-T2T for internal carrier behaviors based on PTB7-Th: PC 71 BM system. It's found that the PO-T2T doped ETLs played a role in morphology optimization of ETL and undermined the trap-assistant recombination through filling the defects ZnO itself had, simultaneously. Besides, the electron mobility was also improved. With the optimized functionalities, the OSCs' efficiency based on fullerene system Poly[4,8- bis(5-(2-Ethylhexyl)thiophen-2-yl) benzo [1,2-b:4,5-b′] dithiophene-co-3-fluorothieno [3,4-b] thiophene-2-carboxylate] (PTB7-Th): [6,6]-Phenyl C71 butyric acid methyl ester (PC 71 BM) was improved from 9.03% to 9.84%. Finally, when this strategy was applied into another hot-topic system, poly((2,6-(4,8-bis(5-(2-ethylhexyl-3- fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5- (1′,3′-di-2-thienyl)-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′] dithiophene-4,8-dione)) (PBDB-TF):2,2′-((2Z,2′Z)-((12,13-bis(2- ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e] thieno[2,″3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5] thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (Y6), a high PCE of 16.34% was obtained. These results demonstrated that the PO-T2T had a positive role in OSC performance improvement. • OSCs based on PM6:Y6 achieved a PCE of 16.34% from 15.44%. • The morphology of PO-T2T doped ETL was more feasible for the form of the active layer. • The defects in ZnO were weakened and the electron collection was facilitated.
Read full abstract