Coal fly ash (CFA) is an essential raw material in brickmaking industry worldwide. There are some coal mines with a relatively high content of uranium (U) in the Xinjiang region of China that are yet understudied. The CFA from these coal mines poses substantial environmental risks due to the concentrated uranium amount after coal burning. In this paper, we demonstrated a calcifying ureolytic bacterium Halomonas sp. SBC20 for its biocementation of U in CFA based on microbially induced calcite precipitation (MICP). Rectangle-shaped CFA bricks were made from CFA using bacterial cells, and an electric testing machine tested their compressive strength. U distribution pattern and immobility against rainfall runoff were carefully examined by a five-stage U sequential extraction method and a leaching column test. The microstructural changes in CFA bricks were characterized by FTIR and SEM-EDS methods. The results showed that the compressive strength of CFA bricks after being cultivated by bacterial cells increased considerably compared to control specimens. U mobility was significantly decreased in the exchangeable fraction, while the U content was markedly increased in the carbonate-bound fraction after biocementation. Much less U was released in the leaching column test after the treatment with bacterial cells. The FTIR and SEM-EDX methods confirmed the formation of carbonate precipitates and the incorporation of U into the calcite surfaces, obstructing the release of U into the surrounding environments. The technology provides an effective and economical treatment of U-contaminated CFA, which comes from coal mines with high uranium content in the Xinjiang region, even globally.
Read full abstract