Graphite plays a crucial role as a moderator and reflector in high-temperature gas-cooled reactors (HTGRs). However, under high-irradiation conditions, graphite exhibits microcracking within the operational period. Studies have been investigated the potential of composite-based materials for replacing graphite in HTGRs. This study focused on a magnesium oxide (MgO)-based composite material as the host matrix and a homogeneously distributed beryllium oxide (BeO) as the entrained moderating phase and investigated the feasibility of the MgO–BeO as the new moderator in a small HTGR to achieve high burnup performance. In this study, the conceptual design of the HTR50S was selected as one of the candidates for the small HTGR concept. Burnup calculations and safety evaluation in HTR50S design were performed. The Monte Carlo MVP 3.0 and MVP-BURN codes were used in this study for neutronic calculations. Results revealed that a high burnup of 80 GWd/t can be achieved using a fuel composition of 6 kg heavy metal per fuel block with 17 wt% of 235U enrichment. Furthermore, a negative temperature coefficient of reactivity was achieved during the operation period.
Read full abstract