Abstract Optical waveguides with semiconductor cores are drawing considerable research interest in the domain of supercontinuum (SC) generation in recent times. In this work, we design a square-core silicon nitride buried waveguide with a silica-clad, aiming for a wideband spectrum generation in the mid-IR region when operated at the standard telecommunication wavelength of 1550 nm. Among different such silicon nitride square-core buried waveguides, we propose a typical design with dimensions of 400 nm × 400 nm along its height and width, capable of producing a highly coherent broadband intensity spectrum ranging from 810 nm to 5441 nm after propagating through just a few millimeters of the waveguide. The group velocity dispersion maintains minimal value over a broad wavelength range in the mid-IR region, while the nonlinear coefficient is estimated to be sufficiently high. The nonlinear pulse propagation through such a waveguide leads to achieving an SC spanning over 2.76 octaves, sufficiently broader than previously reported silicon nitride-based waveguides. Furthermore, our calculations confirm the highly coherent nature of the generated SC. To the best of our knowledge, this is the first report of SC generation maintaining a high degree of coherence over such a wide wavelength range in the mid-IR zone using a square-core silicon nitride buried waveguide.
Read full abstract