In this paper, we investigate the gravitational lensing effect and the shadow around a Schwarzschild-like black hole in metric-affine bumblebee gravity, which leads to the Lorentz symmetry breaking. We first present a generalized formalism for calculating higher-order corrections to light weak bending angle in a static, spherically symmetric and not asymptotically flat spacetime, and then applying this general formalism to the metric-affine bumblebee gravity. Moreover, we derive the light deflection angle and the size of the Einstein ring within the weak field in this scenario. In addition, we analyze the black hole shadow in this theory framework. By using observational data from the Einstein’s ring of the galaxy ESO325-G004 and the black hole shadow of the M87\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{M}87$$\\end{document} galaxy, we estimate the upper bounds of the Lorentz symmetry breaking coefficient ℓ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\ell $$\\end{document}, respectively.
Read full abstract