Abstract
The bumblebee gravity model, with a vector field nonminimally coupled to gravity, is a natural extension of the Einstein-Maxwell theory. In this theory, a black hole can carry a vector hair, making the metric deviate from the Schwarzschild metric. To investigate the detectability of the vector hair, we consider an Extreme Mass Ratio Inspiral (EMRI) system, where a stellar-mass black hole inspiraling into a supermassive black hole. We find that, with a one-year observation of an EMRI by a space-based gravitational-wave detector, we can probe the vector charge as small as $Q\sim 10^{-3}$ in the bumblebee gravity model, which is about three orders of magnitude tighter comparing to current EHT observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.