Variations in conductivity with particle size have been observed in cobalt ferrite, when synthesized by solgel auto-combustion method. Impedance analysis reveals metallic and semiconducting behavior at room temperature for a particle size of 6 nm and 52 nm, respectively. Upon thermal activation, metallic to semiconducting phase transition has been observed as a function of particle size and vice-versa. Grainboundary Resistance (Rgb), increased drastically with particle size (19 MΩ for 6 nm and 259 MΩ for 52 nm) at room temperature. AC conductivity and dielectric constants exhibit similar metallic to semiconducting phase transition at 6 nm and semiconducting behavior at 52 nm with temperature in the selected frequencies. Enhanced magnetic moment with an increase in the grain size along with decreased coercivity (1444 G to 1146 G) reveals transition from single domain to multi-domain. Increased inter-particle interaction is responsible for metallicity at the nano level and on the contrary semiconductivity is attributed to bulk.
Read full abstract