Weyl semimetals are a newly discovered class of materials that host relativistic massless Weyl fermions as their low-energy bulk excitations. Among this new class of materials, there exist two general types of semimetals that are of particular interest: type-I Weyl semimetals, that have broken inversion or time-reversal symmetry symmetry, and type-II Weyl semimetals, that additionally breaks Lorentz invariance. In this work, we use Born approximation to analytically demonstrate that the type-I Weyl semimetals may undergo a quantum phase transition to type-II Weyl semimetals in the presence of the finite charge and magnetic disorder when non-zero tilt exist. The phase transition occurs when the disorder renormalizes the topological mass, thereby reducing the Fermi velocity near the Weyl cone below the tilt of the cone. We also confirm the presence of the disorder induced phase transition in Weyl semimetals using exact diagonalization of a three-dimensional tight-binding model to calculate the resultant phase diagram of the type-I Weyl semimetal.