Civil construction and buildings account for a significant 36% of worldwide energy consumption, contributing to 37% of global CO2 emissions. In Brazil, buildings consume a substantial 51.2% of the nation’s electricity production. Remarkably, approximately one-third of this energy is allocated specifically for maintaining thermal comfort within these structures. The thermal performance of a building has a significant impact on its energy efficiency; in this way, technologies developed to contribute to the energy efficiency of envelopes can directly contribute to the reduction in the building’s overall energy consumption. PCMs are technologies capable of absorbing heat without increasing temperature and can contribute to the better energy performance of envelopes. PCMs are used as a thermal performance solution in cold climate regions, and studies show that they are likely to work in buildings in tropical climates. The objective of this work is to analyze the performance of PCMs in tropical regions of the southern hemisphere, specifically in Brazil, and their behavior according to the constructive system used. Computer simulation contributes to an analysis closer to the reality of the implementation of this technology in these regions. This work is carried out with simulations in the software EnergyPlusTM version 24.1. The results demonstrate that PCMs can effectively contribute to a reduction in energy consumption for the thermal comfort of buildings in tropical climates, demonstrating the possible feasibility of the development of this technology for tropical climates.
Read full abstract