Abstract Linear quantum optics is advancing quickly, driven by sources of correlated photon pairs. Multi-photon sources beyond pairs would be a powerful resource, but are a difficult technology to implement. We have discovered a way in which we can combine multiple pair-sources to act analogous to sources of four, six or even eight correlated photons for the creation of highly entangled quantum states and other quantum information tasks. The existence of such setups is interesting from a conceptual perspective, but also offers a useful abstraction for the construction of more complicated photonic experiments, ranging from state generation to complex quantum networks. We show that even just going from probabilistic two-photon sources to effective four-photon sources allows conceptually new experiments for which no other building principles were known before. The setups which inspired the formulation of these abstract building blocks were discovered by a computer algorithm that can efficiently design quantum optics experiments. Our manuscript demonstrates how artificial intelligence can act as a source of inspiration for the scientific discoveries of new ideas and concepts in physics.
intelligence can act as a source of inspiration for the scientific discoveries of new ideas and concepts in physics.
Read full abstract