As a replacement for polybrominated diphenyl ethers (PBDEs), organophosphorus flame retardants (OPFRs) have been widely used and detected in different indoor environments all over the world. This paper comprehensively describes the concentration levels and distribution information of 11 kinds of OPFRs from 33 indoor dust and 10 air environments, from which TBOEP, TCIPP, and TDCIPP were observed to have higher concentrations in indoor environments. The ΣOPFRs displayed higher concentrations in indoor dust than in indoor air due to the higher molecular weight and vapor pressure of ΣOPFRs in building decoration materials, specifically for TCIPP and TDCIPP compounds. Considering that it is inevitable that people will be exposed to these chemicals in the indoor environments in which they work and live, we estimated their potential health risks through three human exposure pathways and found that the ingestion exposure to TBOEP for toddlers in Japan may reach up to 1270.80 ng/kg/day, which comprises a significant pathway compared to dermal contact and indoor air inhalation. Specifically, the combined total exposure to OPFRs by air inhalation, dust ingestion, and dermal contact was generally below the RfD values for both adults and toddlers, with a few notable higher exposures of some typical OPFRs.
Read full abstract