Macrocyclic glycopeptide based liquid chromatography stationary phases are known for their highly selective peptide separations. Fast and ultrafast (t R < 1min) high-efficiency separations were achieved with superficially porous particle (SPP)-based stationary phases. Separations of pharmaceutically important classes of peptides such as enkephalins and bradykinins have been achieved in less than 5min in isocratic elution modes. Selectivity for peptides structurally similar to one another was increased with use of teicoplanin-based stationary phases compared with commercial C18 stationary phases. Ultrafast isocratic separations of structurally related peptides were achieved with teicoplanin- and vancomycin-based short SPP columns. Acidic mobile phases produced better separations. Ammonium formate was the optimal mobile phase buffer additive. Use of an appropriate combination of a macrocyclic glycopeptide stationary phase and a mobile phase permits faster and more electrospray ionization mass spectrometry compatible isocratic separations than previous gradient approaches. The tryptic peptide separation characteristics of the teicoplanin stationary phase are demonstrated. Additionally, compared with commercial C18 stationary phases, teicoplanin showed tryptic peptide separations with different selectivities. Graphical Abstract Ultrafast separation of enkephalin peptide epimers.