Travel time variability (TTV) is a crucial indicator of transportation network performance, assessing travel time reliability and delays. This study investigates TTV metrics within the context of shared mobility using probe data from transportation network companies (TNCs) in Chicago, Los Angeles, and Dallas–Fort Worth. Eight reliability metrics are analyzed and compared for each origin–destination (OD) pair in the network, including standard deviation (SD), the Planning Time Index (PTI), the Travel Time Index (TTI), the Buffer Index (BI), On-time Measures PR (alpha), and the Misery Index (MI), to evaluate their effectiveness in clustering OD pairs using K-means clustering. The findings confirm that SD, PTI, and MI are particularly effective in measuring travel time reliability and clustering within urban systems. This study identifies the most unbalanced supply–demand OD pairs/regions in each city, noting that low/medium-SD clusters around metropolitan airports indicate stable travel times even in high-demand zones, while high-SD clusters in downtown areas reveal significant traffic demands and unreliability. These patterns become more pronounced in study areas with multiple city centers. This study highlights the need for targeted strategies to enhance travel time reliability, particularly in regions like Dallas–Fort Worth, where public transportation alternatives are limited.