Riboflavin, an essential vitamin for humans, is extensively used in various industries, with its global demand being met through fermentative processes. Hyphopichia wangnamkhiaoensis is a novel dimorphic yeast species capable of producing riboflavin. However, the nutritional factors affecting riboflavin production in this yeast species remain unknown. Therefore, we conducted a kinetic study on the effects of various nutritional factors-carbon and energy sources, nitrogen sources, vitamins, and amino acids-on batch riboflavin production by H. wangnamkhiaoensis. Batch experiments were performed in a bubble column bioreactor to evaluate cell growth, substrate consumption, and riboflavin production. The highest riboflavin production was obtained when the yeast growth medium was supplemented with glucose, ammonium sulfate, biotin, and glycine. Using these chemical components, along with the mineral salts from Castañeda-Agullo's culture medium, we formulated a novel, low-cost, and effective culture medium (the RGE medium) for riboflavin production by H. wangnamkhiaoensis. This medium resulted in the highest levels of riboflavin production and volumetric productivity, reaching 16.68 mg/L and 0.713 mg/L·h, respectively, within 21 h of incubation. These findings suggest that H. wangnamkhiaoensis, with its shorter incubation time, could improve the efficiency and cost-effectiveness of industrial riboflavin production, paving the way for more sustainable production methods.
Read full abstract