Fission gas bubbles in UO2 nuclear fuel have been observed to exhibit pressures in excess of the equilibrium bubble pressure; however, the cause of bubble over-pressurization has not yet been demonstrated. The mechanical interaction between a bubble and the surrounding matrix or grain boundary depends on the internal pressure of the bubble and local stress state, such that over-pressurized bubbles are thought to be responsible for fragmentation and pulverization, when exposed to a temperature ramp. Here, we investigate the role of U interstitials, produced through irradiation, in over-pressurizing bubbles by using a combined molecular dynamics (MD) and cluster dynamics approach. Firstly, the energies for the capture of interstitials and vacancies by bubbles have been determined from MD as a function of the ratio of gas atoms to vacancies that make up the bubble. Secondly, these reaction energies have been implemented in the cluster dynamics code Centipede to predict bubble over-pressurization as a function of temperature for typical fission rates. It was found that there is a transition from low pressure bubbles (at high temperatures) to high pressure bubbles (at lower temperatures). The cause of this behavior was shown to be the creation of irradiation-induced interstitials that are highly mobile relative to vacancies at low temperature; whereas, vacancies are sufficiently mobile at high temperatures to limit bubble pressures. This result supports the hypothesis that over-pressurized bubbles form during steady-state operation and that this behavior is highly sensitive to the local pellet temperature.
Read full abstract