Biochar colloids released from biochar materials are ubiquitous in the environment and undergo environmental transformation processes that may alter their properties. Natural subsurface environments are usually under unsaturated conditions, which could affect the transport of biochar colloids. This study investigated the transport of pristine and aged biochar colloids under unsaturated conditions by aggregation test, bubble column experiment, and sand column experiment. After aging, the biochar showed a more negative, hydrophilic, and rougher surface. Compared with pristine biochar colloids, aged biochar colloids in NaCl solution were not retained at the air-water interface (AWI) due to their more hydrophilic and rougher surface. In CaCl2 solution, more pristine and aged biochar colloids were retained at the AWI because Ca2+ weakened the electrostatic repulsion between biochar colloids and the AWI. With the decrease in saturation, the transport of pristine and aged biochar colloids decreased by 17 %‑67 % through the retention at AWI and air-water-solid (AWS) interface. The transport of biochar colloids in NaCl solution was increased by 10 %‑20 % after aging as the aged biochar was not retained at the AWI. The difference of transport between pristine and aged biochar colloids in CaCl2 solution (<8 %) was lower than that in NaCl solution due to the enhanced retention of aggregated biochar colloids at the AWI and AWS interfaces. These results highlight the importance of the surface structure of biochar on its behavior in the environment, which is essential for assessing the potential of biochar application for carbon sequestration and environmental protection.